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1.* INTRODUCTION

Let X - {X(t) : t > 0) be a real-valued (measurable) stochastic pro-
cess representing the output of a simulation. (To incorporate output I

sequences X into our framework, we set X(t) - X where Ftl is the

greatest integer less than or equal to t.) The process X is said to

possess a steady-state if there exists a finite constant r such that

(1.1) r(t) f X(s)ds - rt0

as t + -, where --= denotes weak convergence. The problem of consistent-

ly estimating and producing confidence intervals for the parameter r is

known, in the simulation literature, as the steady-state simulation prob-

lem.

The limit theorem (1.1) suggests that r(t) can be used to consis-

% tently estimate r. It turns out that one can frequently establish that

the output process X in fact satisfies a somewhat stronger relation,

namely, there exist finite constants r and a such that

(1.2) /2 (r(t) -r) --> a N(0,1)

Suppose now that one can construct an estimator s(t) such that

(1.3) s(t 0 - a

as t +,. Then, (1.2) and (1.3) together imply that if a > 0, then the

interval
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rs(t) s(t)'

(1.4) r(t) - z(6) s/2 r(t) + z( 6 )
t t

is an asymptotic I00(I-6)% confidence interval for r, provided that z(6)

is chosen to solve the equation P{N(O,1) < z(6)} I - 6/2.

The above discussion suggests that in the presence of an output pro-

cess satisfying (1.2) with a > 0, the steady-state simulation problem is,

in principle, solved, once an estimator s(t) for a has been constructed.

Thus, the determination of an estimator s(t) for a can be viewed as the

fundamental problem of steady-state simulation output analysis. (It

should, however, be noted that certain output analysis methods employ a

different approach, which does not require explicit estimation of a; the

* methods of batch means (see pp. 85-89 of BRATLEY, FOX, and SCHRAGE (1983)

' for a description) and standardized time series (SCHRUBEN (1983)) fall into

this category).

As a consequence of the above observation, a great deal of attention

has been focused on the construction of such estimators for a. In some

sense, all currently available estimation methods make use of the fact that

if I is well-behaved and approximately stationary, then (1.2) suggests

that

lim E(t(r(t) - ) 2 a2EN(O, 2

..: - d

(1.5) i.e., 2 7 EX c(O)x c(t)dt = a2

2 c

p.
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where X (t) B X(t) - r. Spectral procedures (see pp. 95-98 of [31) useC

kernel estimators to estimate the left-hand side of (1.5), whereas autore-

gressive methods (see pp. 98-101 of [31) fit an autoregressive Process to

1 , compute the analog of (1.5) for the fitted process, and use that quan-
t a a
tity as an estimator of (1.5) for I. As for the regenerative method (see

pp. 89-94 of [31), it, loosely speaking, uses the special structure of a

regenerative process to "truncate" the integral on the left-hand side of

(1.5) at a regeneration time, threby simplifying the estimation problem.

In this paper, we propose a new method for consistently estimating a,

which does not make any explicit use of relationship (1.5). Our estimators

are based on known limit theorems about the increments of Brownian motion;

the constant a appears as a scaling constant in these limit theorems. We

then use strong approximation methods to translate the resulting estimator

for a from the Brownian motion back to the original output process X;

the resulting estimator for a depends only on the observed values of K,

and not the Rrownian motion.

In some respects, our method is similar to that of SCHRUBEN (1983).

The method of standarized time series depends on the fact that a appears

.as a scaling constant when one veaklv approximates the original process by

a Brownian motion; a is not estimated but is instead "cancelled" out. Rv

contrast our method involves strong approximation results and gives rise to

strongly consistent estimators for a. As proved in GLYNN and ILEtART

(1985), consistent estimation of a enjoys certain asymptotic advantages

over standardized time series.

In Section 2, we introduce our estimators s(t) for a; our basic

hypothesis on X is that a suitable strong approximation by Brownian

'N 3



motion is possible. Section 3 is devoted to discussion of processes I

which satisfy the strong approximation hypothesis. In Section 4, the rate

of convergence of s(t) to a is studied, and compared to that available

via the regenerative method. Our main contribution here is to suggest that

entirely new methods for estimating a may be worth exploring. Further

comparison of these new methods with the old methods should be carried out

via numerical examples.

2. A MV CLASS OF ESTIMATORS FOR G

Let S - {S(t): t > 0), where S(t) X(s)ds. Throughout this

section, we shall assume that:

(2.1) there exists a probability space supporting a process S* and a

standard Brownian motion such that:

(i) the distribution of S equals that of S*

(ii) S*(t) - rt - aB(t) + O(t 1 2 - k ) a.s. for some constants r,

a, and X (0 < X < 1/2, a > 0) as t % *.

We shall refer to (2.1) as our strong approximation assumption; It says

that a process S*, possessing precisely the same distribution as S, can

be a.s. well approximated by a Brownian motion. Note that under (2.1)

* (ii),

(2.2) t-l 2 (S*(t) - rt) - t-I/2 B(t) * 0 a.s.

as t + . By (2.1) (i), it follows that (2.2) also holds with S taking

the role of S*; this shows that (2.1) automatically implies (1.2).

44
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For 0 < p 1 1, let

s (t) - sup S(u + tp ) - r(t)t p - S(u)

0<u<t-tp (2tp (I - p) 0log t)17f

(2.3) THOREM. If p is chosen so that p + 2X > 1, 0 < p < 1, then

s1(t) - a a.s. as t 4.

PROOF. CSORGO and REVESZ (1979a) showed that

(2.4) lim sup B(u + tp ) - 3(u) = a.s.
O<u<t-t p  (2tp  (1 - p) • los t) 1 / 2

Let S*(t) - S*(t) - rt. By (2.1) (ii), S*(t) - o'B(t) + O(t 1/ 2- k) a.s.c c

so it follows that

(2.5) sup laB(u + t p ) - a(u) - S*(u + t p ) - S*(u)l
C C

o<u<t-t
p

0(tl/2k ) a.s.

Relations (2.4) and (2.5), together with the condition 2p + X > 1, imply

that

S*(u + tp ) - Sc(U)(2.6) lim sup c = a a.s.

t 0<u<t-tp (2tp  ( - p) log t1 /2

i.e., lm sup S*(u + t) - rtp - S*(u) - a a.s.

t (O<u<t-tp  (2tp  (1 - p) log t) 2

Furthermore, the law of the iterated logarithm for Brownian motion

implies that

5



(2.7) T B(t) a.s.
(2t log log )

Applying the strong approximation (2.1) (11) to (2.7), we find that

(2.8) r*(t) - r 0 ((log log t)1/2) a.s.
t (p-i

where r*(t) = S*(t)/t. Since (log log t) * t + 0, it follows from

(2.6) and (2.8) that

(2.9) lira sup S*(u+tp) - tPr*(t) - S*(u)

t+- O<ugtt p  (2tp " (1-p) • log t)

But S has the same distribution as S*, so the theorem follows immedi-

ately from (2.9).

We can further define the following estimators:

t- s S(u+t p ) - r(t)t p - S(u)

O<u<t-tp (2tp * (-p) * log t)1 /2

8 (t sup sup S(u+v) - r(t)v - S(u)

s at, sup sup 1/2)

3 Ku<t-tp O<v<tp  (2tp  (l-p) a log t)I/ 2

s4 (t) - sup sup S(u+v) - r(t)v - S(u)
4(u t-t p  O p  (2tp  (l-p) " log t) 1/2

s5(t) i nf sup S(uv) - r(t)v - S(u)

O<u<t-t p  Ov<tP M(t)

6 .



where

a(t) (8 (l-p) log t/lx 2 tP)1/2

(2.10) THEOREI. If p is chosen so that p + 2X > 1, 0 < p < 1, then

s i W a a.s. as t * , 2 < i < 5.

The proof of this theorem follows exactly as for Theorem 2.4; the key

is to have available an analog to (2.4) for Brownian motion, for each of

the estimators s (t), 2 < i < 5. For si(t), 2 < i < 4, we refer to CSORGO

and REVESZ (1979a); for s(t) , the result can be found in CSORGO and

REVESZ (1979b).

3. STRONG APPROIIMATION OF STOCHASTIC PROCESSES

We now proceed to discuss conditions under which Assumption 2.1 holds.

SETTING 1: Let Y - {Y(t) : t > 0) be a (possibly) delayed regenerative

process with regeneration times 0 < T(O) < T(1) < - If f is a real-

valued function defined on the state space of Y, set X(t) - f(Y(t)). Let

v(k) - T(k) - T(k-1) for k > 1, and assume that Y is positive recurrent

in the sense that ET(1) < * Suppose further that there exists 0 < 5 < 2

5such that

7
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T( 1 ) 2+"62

(3.1) Mi) EL 0 IX(s) Ids) 2+6 <
T( 0)

(ii) ET(M)1+6/2 <-.

T(n)

(iii) EZ (1) > 0, where Z(n) f f (X(s) - ) ds and

T(n-1) Iro

T(1)
p S E(f X(s) ds)/ET(1) .

T(0)

Then, (2.1) is satisfied with r - p, a2 - EZ 2(1)/Er(1), and X satis-
'Ue

fying 0 < X < 6/(4 + 26); see pp. 117-122 of PHILIPP and STOUT (1975) for

a proof in the case where Y is a countable state irreducible Markov chain

(their argument easily adapts to the more general regenerative setting

described above).

SETTING 2: Let X ( (n  n > 0) be a strictly stationary sequence of

2+6r.v.'s for which there exists 0 < 6 < 1 such that EIXo 2  ( . Sup-

pose, in addition, that I is *-mixing (see Section 20 of BILLINGSLEY

(1968) for a discussion) with mixing coefficients satisfying

1/2 I
n- *n) < If

rim 1

(3.2) a 2 f EX c(O)X (s)ds > 0
0 c c

(the integral (3.2) converges absolutely), then (2.1) is satisfied with

2r - EX(O), a . t, and X satisfying 0 < % < 6/(24 + 126) (if X0  is

bounded a.s., then X can be chosen to be 1/12). This result can be

found on pp. 26-38 of fiI]. (For a version of this result in the case when

r CM (n)I ( 1/ ' see BERKES and PHILIPP (1979).)

-no
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Further strong approximation theorems are also available for lacunary

trigonometric series, martingale processes, Gaussian sequences,and strongly

mixing processes; see [111 for a complete description of such results.

Thus, the assumption (2.1) is satisfied by a large class of stochastic pro-

cesses exhibiting weak time dependencies.

We should also comment that the convergence rates (i.e., the size of

X) quoted above for regenerative processes and -mixing sequences can

probably be improved. For example, much better results are available for

sequences of independent and identically distributed (i.i.d) r.v.'s. in

particular, it is reasonable to expect that results for regenerative

processes can be obtained for X arbitrarily close to 1/2.

SETTING 3: Let X - {X : n > 0} be a sequence of non-degeneraten

i.i.d.r.v.'s with E!X 0 1P < - for p > 2. Then, (2.1) is satisfied with

r - EX0 , a2 . var(X 0 ), and X - I - I/p; see KOMLOS, MAJOR, and TUSNADY

(1975,1976) and MAJOR (1976) for proofs.

4. COMPARISON OF CONVER GENCE RATES

It has been shown by REVESZ (1980) that if 0 < p < 1, then

2 +6 B(u+tp ) -B(u)
lim (log t)2  sup 17 <I = 0 a.s.

t '  O<u<t-t p (2t p "(I-P) l og t) I /

+6
T- (log t) 2  sup sup B(u+v) -(u) 0 a.s.log t) ~ tt 12721p lgt)/

O<u<t-tP O<v<t p (2tp  (1-p) log t)

for 6 - 0; it is further indicated in CSORGO and STEINEBACH (1981) that

for 6 > 0, the above lim sup's are infinite.

9
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o-V Using the strong approximation (2.1), it follows that

li (log s ) - a 0 a.s.
sitL)

for & , 0 (i 1,3), whereas divergence occurs if 6 > 0. Thus, the rate

of convergence of s (t) (i - 1,3) to a is, roughly speaking, of order

(log t)

It is instructive to compare this rate of convergence to that avail-

able when a is estimated via the regenerative method of simulation (we

choose this method as a basis for comparison, since we can do the conver-

gence rate analysis easily in this setting).

Let Y be a regenerative process with regeneration times 0 < T(0)

< T(1) < 0-0; set X(t) - f(Y(t)), where f is a real-valued function

defined on the state space of Y. Put T(-1) = 0 and let N(t) -

max {k > -1: T(k) < t}. The basic regenerative estimator for a is given

by

0; N(t) < 0

SWt - [N(t)
1 1.(i -r~) )] 1/ 2 ;N(t) > I

L -.-

where V X(s)ds and i= T(i) - T(i-1).
T(i-1)

10
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T(i) .

(4.2) THEORMI. If E(f (IX(s)j + 1)ds) 4 < ,

Tr(i-I)

li--' t 15(t) p 1/2 a.s.,

t-=  2 log log a

where

2 1 • EA 1 - xZ 1124a2..I

Z = V -n n n

A Z a2 T ,and
n n n

X -2 EZI I/E I •

Recall that for regenerative processes, r EV IE'Z and 2
=

2 EZ2/ET 1  so that Z and A are mean-zero r.v.'s; we will need this
n n

fact in our proof of Theorem 4.2. Also, we remark that Theorem 4.2 is a

." -~statement of the law of the iterated logarithm for the estimator s(t).

PROOF (of Theorem 4.2): On the event {N(t) > I}, observe that if v(t) =

s C t), then

5i
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N~t)
(4.3) v(t) -

2  Nt) 2

+ 2(r r(t)) t zi r

S+ (r - r(t)) 2  1t ) T2
~i-I

N(t)

I (A i  Z i )t it
N( t()

- 2 - CX(s)- r)ds 1
T(N(t)) t i-I

Nit) EZI I

But s(t) -g~v(t)) where g(x) - x ,so by Taylor's theorem, we have

+(t) _ a + g•(v(t)) (v(t) _ 02)

where &(t) lies between v(t) and a2  and g'(x) - 1/(2x 1/2 ). Since v(t)I

*a2 a.s., it follows that g'C(()) + 11C2a) a.s. Thus, to prove the

theorem, it suffices to show that

(4.4) ha V(t) 2 01 a.s.
+ gr - t)

12l

But ~ t)= gv~t) whre ~x) xI 2 , o byTayor' therem wehaL



By the Hartman-Wintner law of the iterated logarithm and the fact that

N(t) *- a.s., we have that
N(t)

t+W 2 log log NTt) INNTU i- (A I Z =as

. But N(t)/t 1/E /Z I  ao. as t ,so

N~t) m 2a~/ 2  1/

(4.5) lrn i2 l ot I- (At - xz )  
- 1 a.s.

rt - -10t1-o i-1

-- N(t) EZl 'T
(4.6) loG t (r r(t)) Z 'T N) I <- a.s., and

t*+ og llog ti i g ET

N~t)
(4.7) lim t (r r(t)) 2  < a.s.

log log t - i-I

Furthermore,

t T( k)
f IX(s) - rl ds < max (f IX(s)Ids + Ir Ik )

T(N(t)) -<k<N(t)+l T(k-I) k

Our moment hypothesis allows one to apply the Borel-Cantelli lemma to I
obtain

T(k) 1/4

(f IX(s) Ids + Ir I / k * 0 a.s.
T(k-1) k)

13
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as k * ; this shows that

"r(k)
ma U IX~s) Ids + Ir Ij rk 0 a's.

t 1<k<N(t)+i T(k-1)

and t * . Hence

(4.8) li t3 14  f (X(s) - r)ds 0 _ - 0 a.s.t " T(N(t)) t2  i-1

,I.

as t-1I Combining (4.5), (4.6), (4.7), and (4.8), we see that the decom-

position (4.3) yields (4.4).

Roughly speaking, Theorem 4.2 says that s(t) converges to a at

rate (log log t/t) /2. By comparison with the previously obtained con-

vergence rate for sit) (i-1,3), this is much faster. This does not

V necessarily, however, imply that the estimators s i(t) for a will behave

worse than the regenerative estimator for purposes of confidence interval

generation.

14
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